
General entanglement-assisted transformation for bipartite pure quantum states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 785

(http://iopscience.iop.org/1751-8121/40/4/014)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/4
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 785–792 doi:10.1088/1751-8113/40/4/014

General entanglement-assisted transformation for
bipartite pure quantum states

Wei Song1, Yan Huang2, Nai-Le Liu1 and Zeng-Bing Chen1,3

1 Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern
Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s
Republic of China
2 Department of Computer Science and Technology, University of Science and Technology of
China, Hefei, Anhui 230026, People’s Republic of China
3 Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg,
Germany

Received 3 September 2006, in final form 5 December 2006
Published 9 January 2007
Online at stacks.iop.org/JPhysA/40/785

Abstract
We introduce the general catalysts for pure entanglement transformations under
local operations and classical communications in such a way that we disregard
the profit and loss of entanglement of the catalysts per se. As such, the
possibilities of pure entanglement transformations are greatly expanded. We
also design an efficient algorithm to detect whether a k × k general catalyst
exists for a given entanglement transformation. This algorithm can also be
exploited to witness the existence of standard catalysts.

PACS numbers: 03.67.−a, 03.67.Mn

Entanglement plays a central role in quantum information processing (QIP) tasks, such as
quantum communication [1], quantum superdense coding [2] and quantum computation [3].
With the development of quantum information science, people have realized that quantum
entanglement is a kind of physical resource in nature, like energy. To implement certain
QIP tasks, measuring, manipulating and purifying entanglement [4] by local operations and
classical communications (LOCC) are unavoidable. An important problem concerns the
entanglement transformation between bipartite states under LOCC. This problem arises as a
consequence of the fundamental question of how we can convert one type of physical resource
into another. There have been considerable efforts devoted to this problem [5–14]. Bennett
et al made a first step on this problem [5] and proposed an entanglement concentration
protocol which solves the entanglement transformation problem in the asymptotic case.
Another significant advance for finite cases was made by Nielsen [6], who connected
the entanglement transformation with the theory of majorization [15, 16] in mathematics.
Let |ψ〉 = ∑n

i=1
√

αi |i〉|i〉 and |ϕ〉 = ∑n
i=1

√
βi |i〉|i〉 be pure bipartite states with

ordered Schmidt coefficient (OSC) vectors ψ = (α1, . . . , αn) and ϕ = (β1, . . . , βn),
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where α1 � · · · � αn � 0 and β1 � · · · � βn � 0. Then there exists a transformation
that converts |ψ〉 to |ϕ〉 with 100% probability under LOCC iff ψ ≺ ϕ, where ≺ denotes a
majorization relation, namely, for 1 � l � n

l∑
i=1

αi �
l∑

i=1

βi. (1)

Nielsen’s theorem provides us with a convenient tool for investigating entanglement
transformation. Shortly after Nielsen’s work, a surprising phenomenon discovered by Jonathan
and Plenio [8] is that sometimes an extra entangled state can allow otherwise impossible
entanglement transformation to become realizable. The extra state acts just like a catalyst
in a chemical reaction, remaining what it was before the transformation. A simple example
introduced by Jonathan and Plenio is that |ψ〉 � |ϕ〉 but |ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |χ〉, where
|ψ〉 = (0.4, 0.4, 0.1, 0.1), |ϕ〉 = (0.5, 0.25, 0.25, 0) and |χ〉 = (0.6, 0.4). Here, we have
used an OSC vector to represent a bipartite state. But the state |χ〉 cannot always act as an
assistant in the above way, e.g., it is not capable of catalyzing the transformation |ψ〉 → |ϕ′〉
where |ϕ′〉 = (0.48, 0.27, 0.25, 0).

However, if we allow some entanglement of the catalyst state |χ〉 to be consumed, then
we will greatly improve the possibilities of entanglement transformations. For example, if
we choose |χ ′〉 = (2/3, 1/3), then, by using Nielsen’s theorem, one can easily verify that the
transformation |ψ〉 ⊗ |χ〉 → |ϕ′〉 ⊗ |χ ′〉 can be realized under LOCC. During this process,
some entanglement of |χ〉 is consumed, i.e., E(|χ〉) > E(|χ ′〉), where E is the von Neumann
entanglement entropy.

Formally, suppose that |ψ〉 and |ϕ〉 are bipartite pure states with |ψ〉 � |ϕ〉 under LOCC,
and that another auxiliary bipartite pure entangled state |χ〉 is standby. If there exists |χ ′〉
such that |ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |χ ′〉, we call |χ〉 a general catalyst for the entanglement
transformation from |ψ〉 to |ϕ〉, in the sense that we do not care whether the entanglement
of catalyst |χ〉 is reduced or increased during the process. When the entanglement of |χ ′〉
keeps the same as that of |χ〉, i.e., E(|χ〉) = E(|χ ′〉), the catalyst |χ〉 reduces to the standard
one defined by Jonathan and Plenio [8]; if E(|χ〉) < E(|χ ′〉), the catalyst |χ〉 becomes the
so-called supercatalyst introduced by Bandyopadhyay et al [11]; if E(|χ〉) > E(|χ ′〉), some
entanglement of the catalyst is consumed, which is illustrated by the above example; in this
case we term |χ〉 a subcatalyst.

An important question arises naturally: given bipartite pure states |ψ〉 and |ϕ〉 with
|ψ〉 � |ϕ〉 under LOCC, what states can be general catalysts for the above entanglement
transformation? Another question concerns how could we decide whether or not a k×k general
catalyst exists for certain entanglement transformation. On the other hand, as entanglement is
a very scarce resource (because it cannot be generated by local means and will unavoidably
be degraded by decoherence when transmitted in a noisy environment), we hope that the
entanglement of the catalyst consumed during the entanglement-assisted transformation is as
little as possible. This evokes us to investigate the properties of general catalysts, which will
be the first part of this paper. In the following we shall start with the simplest cases, i.e.,
entanglement transformations between 2 × 2 bipartite pure states.

Consider 2 × 2 bipartite pure states |ψ〉↓ = (α1, α2) and |ϕ〉↓ = (β1, β2), where we
have used |ψ〉↓ to denote a state with Schmidt coefficient vectors being sorted in a non-
increasing order, and |ψ〉 � |ϕ〉 under LOCC. Assume that we are provided with another
2 × 2 entangled bipartite pure state |χ〉↓ = (x, 1 − x), where 0.5 � x � 1. The following
theorem provides a sufficient and necessary condition for |χ〉 to be a general catalyst for
realizing the transformation of |ψ〉 to |ϕ〉.
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Theorem 1. The above pure state |χ〉 is a general catalyst for the transformation of |ψ〉 to
|ϕ〉 iff x � β1/α1.

Proof. Assume that there exists |χ ′〉↓ = (x ′, 1 − x ′) such that |ψ〉⊗ |χ〉 → |ϕ〉⊗ |χ ′〉. Using
Nielsen’s theorem we have xα1 � x ′β1, and so x � x ′β1/α1 � β1/α1. Conversely, we assume
that x � β1/α1. Then we shall show that |χ〉 is a general catalyst. Note first that α1 > β1,
because |ψ〉 � |ϕ〉. For convenience we divide the problem into two cases.

Case 1: x � α1. In this case we can sort the Schmidt coefficients of |ψ〉 ⊗ |χ〉 in a non-
increasing order:

(|ψ〉 ⊗ |χ〉)↓ = (α1x, α2x, α1(1 − x), α2(1 − x)) . (2)

If x ′ > β1, then

(|ϕ〉 ⊗ |χ ′〉)↓ = (β1x
′, β2x

′, β1(1 − x ′), β2(1 − x ′)), (3)

and Nielsen’s theorem imposes the following inequalities:


α1x � β1x
′,

x � x ′,
α1 + α2x � β1 + β2x

′.
(4)

These inequalities will be satisfied as long as x ′ � max
{

α1
β1

x, 1− α2
β2

(1 − x)
}
. If otherwise,

i.e., x ′ � β1, then the second inequality in (4) should be replaced by x � β1 which, together
with the assumption x � α1, contradicts with the requirement α1 > β1.

Case 2: x < α1. If x ′ > β1, then the inequalities imposed by Nielsen’s theorem are


α1x � β1x
′,

α1 � x ′,
α1 + α2x � β1 + β2x

′,
(5)

which hold as long as x ′ � max
{

α1
β1

x, α1, 1− α2
β2

(1−x)
}
. If x ′ � β1, then the second inequality

in (5) will be replaced by α1 � β1 which is a contradiction to the premise α1 > β1. �

Remark. |χ〉 is always a subcatalyst since x ′ > x. If we choose the lower bound of x ′, then
we could get an optimal |χ ′〉, in that there will be a minimum loss of entanglement of |χ ′〉. An
extreme case on the other side is where the entanglement of the auxiliary state is completely
consumed. Indeed, any k × k bipartite pure state |χ〉↓ = (x1, . . . , xk) is a general catalyst for
transforming |ψ〉 to |ϕ〉 iff x1 � β1/α1. This can be shown by simply using Nielsen’s theorem
and putting |χ ′〉↓ = (1), i.e., a separable state. If x1 is strictly smaller than β1/α1, we can
always find sufficiently small ε such that |ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ (1 − ε, ε), thereby the auxiliary
state will not be consumed completely.

Next, we consider 3 × 3 cases.

Theorem 2. 3 × 3 bipartite pure states |ψ〉↓ = (α1, α2, α3) and |ϕ〉↓ = (β1, β2, β3) be
incomparable, i.e., |ψ〉 � |ϕ〉 under LOCC. If x1 � min{β1/α1,(β1 + β2)/(α1 + α2)}, then
an arbitrary k × k bipartite pure state |χ〉↓ = (x1, . . . , xk) is a general catalyst for the
transformation of |ψ〉 to |ϕ〉.
Proof. Suppose the entanglement of |χ〉 is completely lost after the transformation. Then it
suffices to consider the first two Schmidt coefficients of |ψ〉⊗ |χ〉. Two separate cases should
be considered in turn.
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Case 1: x1 � x2α1/α2. In this case, the two largest Schmidt coefficients of |ψ〉⊗ |χ〉 are α1x1

and α1x2. If there exists |χ〉 such that |ψ〉⊗|χ〉 → |ϕ〉⊗|χ ′〉 with |χ ′〉 being a separable state,
then Nielsen’s theorem imposes the conditions that x1 � β1/α1 and x1 +x2 � (β1 +β2)/α1. On
the other hand, since |ψ〉 � |ϕ〉, it follows from Nielsen’s theorem that one of the following
two possibilities must hold: either{

α1 > β1

α1 + α2 < β1 + β2
(6a)

or {
α1 < β1

α1 + α2 > β1 + β2.
(6b)

In both cases, we have β1 + β2 > α1. Hence, the condition x1 + x2 � (β1 + β2) /α1 always
holds and so can be neglected.

Case 2: x1 > x2α1/α2. By a similar procedure we can verify that, in order for |χ〉 to be a
general catalyst, x1 must satisfy x1 � min

{
β1

α1
,

β1+β2

α1+α2

}
. If the above inequality is strict for all

x1, then there exist cases where the entanglement of |χ ′〉 is larger than zero. �

The following theorems 3 and 4, and examples 1 and 2 show that sometimes the only
possible choice is to use subcatalysts. This captures what we have emphasized that general
catalysts greatly expand the possibilities of entanglement transformations.

Theorem 3. |ψ〉 and |ϕ〉 be incomparable states, where |ψ〉↓ = (α1, . . . , αn) and |ϕ〉↓ =
(β1, . . . , βn). Suppose a 2 × 2 or 3 × 3 state |χ〉 is a catalyst for the transformation of |ψ〉 to
|ϕ〉. If α1 > β1 and αn < βn, then |χ〉 must be a subcatalyst.

Proof. First, suppose |χ〉↓ = (x, 1 − x) and |χ ′〉↓ = (x ′, 1 − x ′). By Nielsen’s theorem
we have α1x � β1x

′ which, together with the condition α1 > β1, implies x < x ′. Second,
suppose |χ〉↓ = (x1, x2, x3) and |χ ′〉↓ = (x ′

1, x
′
2, x

′
3). Using Nielsen’s theorem we have

α1x1 � β1x
′
1 and αnx3 � βnx

′
3 which, together with α1 > β1 and αn < βn, imply x1 < x ′

1 and
x1 + x2 < x ′

1 + x ′
2. Consequently, we obtain χ ≺ χ ′. �

Theorem 4. |ψ〉 and |ϕ〉 be 2 × n -level states with |ψ〉 � |ϕ〉, then there does not exist any
standard catalyst or supercatalyst for the transformation of |ψ〉 to |ϕ〉.
Proof. Suppose there exists a catalyst |χ〉 such that |ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |χ ′〉, with E(|χ〉) �
E(|χ ′〉). Then we have E(|ψ〉) + E(|χ〉) � E(|ϕ〉) + E(|χ ′〉), and so E(|ψ〉) � E(|ϕ〉).
Recalling that there is an equivalence between |ψ〉 → |ϕ〉 and E(|ψ〉) � E(|ϕ〉) for 2 × n -
level states [6], we obtain |ψ〉 → |ϕ〉, which is a contradiction. �

Note that this theorem is compatible with theorem 1.

Example 1. When |ψ〉 has fewer Schmidt coefficients than |ϕ〉, by using Nielsen’s theorem it
is evident that no standard catalyst exists for transforming |ψ〉 to |ϕ〉. However, in some
situations the transformation may be realized by using a subcatalyst. Suppose |ψ〉↓ =
(α1, α2), |ϕ〉↓ = (β1, β2, β3), and |χ〉 = (x, 1 − x). To implement the transformation of
|ψ〉 to |ϕ〉, it is obvious that the entanglement of |χ〉 should be consumed completely. If
x � α1, then the condition arising from Nielsen’s theorem reads x � min{β1/α1, β1 + β2} ; if
x < α1, then the condition reads x � β1/α, α1 � β1 +β2 We conclude that under the condition
α1 � β1 + β2, the pure state |χ〉 = (x, 1 − x) with x � {β1/α1, β1 + β2} is a subcatalyst for
transforming |ψ〉 to |ϕ〉.
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Example 2. Let |ψ〉 = (
1
3 , 1

3 , 1
6 , 1

6

)
, and |ϕ〉 = (

1
6 , 1

6 , 1
6 , 1

6 , 1
12 , 1

12 , 1
12 , 1

12

)
, we are provided

with another auxiliary 4 × 4 entangled bipartite state |χ〉 = (
1
4 , 1

4 , 1
4 , 1

4

)
as catalyst. We

could find an optimal state |χ ′〉 = (
1
2 , 1

2

)
(i.e., the entanglement of the subcatalyst state

|χ〉 consumed during the transformation reach a minimum value) such that the transformation
|ψ〉⊗|χ〉 → |ϕ〉⊗|χ ′〉 is possible. Furthermore, it is easy to show that |ψ〉⊗|χ〉 ↔ |ϕ〉⊗|χ ′〉,
since the Schmidt coefficients of |ψ〉 ⊗ |χ〉 and |ϕ〉 ⊗ |χ ′〉 are the same. It means that we
could also transform the state |ϕ〉⊗ |χ ′〉 to |ψ〉⊗ |χ〉. Here, we call state |χ〉 as a time-reverse
subcatalyst in the above entanglement transformation process.

Next, we consider an interesting question. Let {|ψ〉, |ϕ〉} and {|χ〉, |χ ′〉} be two
incomparable state pairs. Can they assist each other mutually so as to realize the transformation
|ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |χ ′〉 by LOCC? We shall demonstrate that this can be the case in some
situations.

Example 3. Consider two incomparable state pairs {|ψ〉, |ϕ〉} and {|χ〉, |χ ′〉}, where
|ψ〉↓ = (α1, α2, α3), |ϕ〉↓ = (β1, β2, β3), |χ〉↓ = (x1, x2, x3), and |χ ′〉↓ = (x ′

1, x
′
2, x

′
3).

Suppose that {
α2x1 � α1x2 � α3x1 � α2x2, α3x2 � α1x3

β2x
′
1 � β1x

′
2, β2x

′
2 � β1x

′
3, β2x

′
3 � β3x

′
1.

(7)

Then we can sort the Schmidt coeffcients of |ψ〉 ⊗ |χ〉 and |ϕ〉 ⊗ |χ ′〉 in a non-increasing
order:

(|ψ〉 ⊗ |χ〉)↓ = (α1x1, α2x1, α1x2, α3x1, α2x2, α3x2, α1x3,α2x3, α3x3), (8)

(|ϕ〉 ⊗ |χ ′〉)↓ = (β1x
′
1, β2x

′
1, β1x

′
2,β2x

′
2, β1x

′
3, β2x

′
3, β3x

′
1, β3x

′
2, β3x

′
3). (9)

Since |ψ〉 � |ϕ〉, either the set of inequalities in equation (6a) or that in equation (6b)
is satisfied. To be specific, we assume the former. Accordingly, in view of the fact that
|χ〉 � |χ ′〉, in order for the desired entanglement transformation to be realizable, the following
inequalities must be satisfied:



x1 + x2 > x ′
1 + x ′

2,

α1x1 � β1x
′
1,

(α1 + α2)x1 � (β1 + β2)x
′
1,

(α1 + α2)x1 + α1x2 � (β1 + β2)x
′
1 + β1x

′
2,

x1 + α1x2 � (β1 + β2)(x
′
1 + x ′

2),

x1 + (α1 + α2)x2 � β1 + β2(x
′
1 + x ′

2),

x1 + x2 � β1 + β2,

x1 + x2 + α1x3 � β1 + β2 + β3x
′
1,

x1 + x2 + (α1 + α2)x3 � β1 + β2 + β3(x
′
1 + x ′

2).

(10)

To show these inequalities can be satisfied simultaneously, we choose

α1 = 0.5, α2 = 0.26, α3 = 0.24,

β1 = 0.49, β2 = 0.48, β3 = 0.03,

x1 = 0.62, x2 = 0.3, x3 = 0.08.

(11)
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′

′

Figure 1. For two incomparable state pairs {|ψ〉, |ϕ〉} and {|χ〉, |χ ′〉} with |ψ〉 = (0.5, 0.26,

0.24), |ϕ〉 = (0.49, 0.48, 0.03), |χ〉 = (0.62, 0.3, 0.08), and |χ ′〉 = (x′
1, x

′
2, 1 − x′

1 − x′
2), if the

transformation |ψ〉 ⊗ |χ〉 → |ϕ〉 ⊗ |χ ′〉 is feasible, then the parameters x′
1 and x′

2 should lie in the
shadow region.

Then, the set of inequalities in equation (7) and equation (10) are equivalent to the following
set: 



x ′
1 � 31/49,

0.97x ′
1 + 0.49x ′

2 � 0.6212,

0.97(x ′
1 + x ′

2) � 0.77,

0.48x ′
1 � 0.49x ′

2,

0.49x ′
1 + 0.97x ′

2 � 0.49,

17x ′
1 + 16x ′

2 � 16,

x ′
1 + x ′

2 < 0.92.

(12)

We can picture the region of the independent parameters x ′
1 and x ′

2 which satisfy the above
inequalities simultaneously in a diagram, figure 1. We find the region nonempty, the desired
result. For example, we may choose x ′

1 = 0.81, x ′
2 = 0.1, x ′

3 = 0.09 It should be noted that
what |ψ〉 and |χ〉 act as in this process are subcatalysts.

On the other hand, if |χ〉 � |χ ′〉 and |ϕ〉 is a maximally entangled state, then for any state
|ψ〉 we have |ψ〉 ⊗ |χ〉 � |ϕ〉 ⊗ |χ ′〉, since otherwise we have |ϕ〉 ⊗ |χ〉 → |ψ〉 ⊗ |χ〉 →
|ϕ〉 ⊗ |χ ′〉. But a maximally entangled state cannot act as a standard catalyst.

In the remainder of this paper, we will consider the following problem. Assume
|ψ〉↓ = (α1, . . . , αn) and |ϕ〉↓ = (β1, . . . , βn) with |ψ〉 � |ϕ〉 under LOCC. How could
we decide whether or not a k × k general catalyst exists for converting |ψ〉 into |ϕ〉? Note
that it suffices to consider whether the process |ψ〉 ⊗ |X〉 → |ϕ〉 is possible, where |X〉
is a k × k maximally entangled state. For k � n, the above process is always possible,
because a k ×k maximally entangled state can always be transformed into any k ×k entangled
state under LOCC; for k < n, we only need to check whether the majorization relation
(|ψ〉 ⊗ |X〉)↓ ≺ |ϕ〉↓ holds. It can be implemented by checking whether the n−1 inequalities
are satisfied. However, this method cannot be applied to decide the existence of k ×k standard
catalysts for certain entanglement transformation. We will propose a Monte Carlo algorithm
to solve this problem. Firstly, we generate a group of x1 � · · · � xk � 0 randomly which
satisfy

∑k
i=1 xi = 1. Then, we merge sort the Schmidt coefficients of |ψ〉⊗ |χ〉 and |ϕ〉⊗ |χ〉
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Figure 2. The numerical results for the successful probability as a function of the big number we
choose. It increases with the big number and reaches 99.92% when the big number is 100.

in a non-increasing order where |χ〉 = (x1, . . . , xk). Now the aim is to check whether the
majorization relation (|ψ〉 ⊗ |χ〉)↓ ≺ (|ϕ〉 ⊗ |χ〉)↓ holds. After running this procedure M
times, if we still cannot find the state |χ〉 such that the above majorization relation holds, we
say there does not exist a standard catalyst for this transformation. Of course, there is a failure
probability when the algorithm gives a false output. But when the big number M is large
enough, the successful probability of our algorithm will approach 1. The detailed description
is as follows:

(i) For i = 0 to k do, xi ← r and [0, 1], where x1 � · · · � xk � 0, and
∑k

i=1 xi = 1
(ii) set count = 0

(iii) while count < BIGNUMBER
(iv) begin merge sort the Schmidt coefficients of |ψ〉⊗ |χ〉 and |ϕ〉⊗ |χ〉 in a non-increasing

order, respectively
(v) if there exists |χ〉 = (x1, . . . , xk) satisfying (|ψ〉 ⊗ |χ〉)↓ ≺ (|ϕ〉 ⊗ |χ〉)↓

(vi) then a k × k standard catalyst exists for this transformation
(vii) return success

(viii) else
count = count + 1
end begin
(ix) return failure

In [14] X M Sun et al also proposed a deterministic algorithm which runs in O(n2k+3.5)

time. However, if k is a variable, employing their algorithm to determine the existence of
standard catalyst will become a NP-hard problem. Suppose we choose the big number to be
M, then it is easy to see that our algorithm runs in O(Mnk) time, which is greatly improved
than the deterministic one.

To show the effectiveness of this algorithm, we will give some examples in the following.
We devise a program to generate 5000 pair of 8 × 8 states {|ψ〉, |ϕ〉} which always have 4 × 4
standard catalysts, where |ψ〉 � |ϕ〉. We run the above algorithm and find that, when the
big number is chosen to be 100, the successful probability is 99.92%. We plot the result in
figure 2.
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In summary, by introducing the concept of the general catalyst, we can greatly expand
the possibilities of entanglement-assisted transformations between pure entangled states. We
consider the problem of how to decide the existence of a k × k general catalyst for certain
entanglement transformation. We also propose a Monte Carlo algorithm for determining the
existence of the standard catalyst. When the dimensions of the state and of the potential catalyst
are both very big numbers, our algorithm is far more efficient than the previous deterministic
algorithm. We believe our results may have potential applications in future manipulations of
quantum entanglement.
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